
www.manaraa.com

I

Maximum Clique Conformance Measure for

Graph Coloring Algorithms.

A Thesis Submitted in Partial Fulfillment of the requirements

of the Master Degree in Computer Science

Middle East University

By

Abdel Mutaleb Mohammad Al-zou'bi

Supervisors

Prof. Mohammad M. Al-Haj Hassan

Dr. Mohammad E. Malkawi

Amman, Jordan

July 2011

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

IV

www.manaraa.com

V

DECLARATION

 I do hereby declare that the present research work has been carried

out by me, under the supervision of Prof. Mohammad M. Al-Haj Hassan

and Dr. Mohammad E. Malkawi. And this work has not been submitted

elsewhere for any other degree, fellowship or any other similar title.

Abdel Mutaleb M. Al-zou'bi

Department of Computer Science
Faculty of Information Technology
Middle East University

www.manaraa.com

VI

ACKNOWLEDGMENTS

The research that has been presented in this thesis is a result of my continual

interaction with my advisors, colleagues and every one interested in this area of

research.

I feel very proud to have worked with my advisors, Prof. Mohammad Al-Haj Hassan

and Dr Mohammad Malkawi. To each of them I owe a great debt of thanks for their

patience, motivation and friendship. My advisors have taught me a lot in the field of

computer science. They also inspired into myself the ability of discovery and

investigation which is the heart of research.

Many thanks to my family for their incredible support. I feel very lucky to be one of

you.

Abdel Mutaleb

www.manaraa.com

VII

CONTENTS

LIST OF FIGURES…………………………..……….................................………X

LIST OF TABLES………………..………...……………………………………. XII

LIST OF ABBREVIATION……………………………………………………..XIII

ABSTRACT…………………………………...……………………………….… XIV

ABSTRACT IN ARABIC…………………………………..………………….... XVI

CHAPTER ONE: INTRODUCTION..1

1.1 PRELIMINARIES ...1

1.1.1 Graphs ...1

1.1.2 Graph Coloring ...5

1.1.3 Cliques ..6

1.1.4 P, NP, NP-Complete Problems ...7

1.2 THE PROBLEM ...8

1.2.1 The largest Degree Algorithm ..9

1.2.2 Clique detection problem..13

1.2.3 The modified largest degree algorithm...15

1.3 OBJECTIVES OF THE STUDY ...15

1.4 SCOPE AND SIGNIFICANCE OF THE STUDY ...16

CHAPTER TWO: LITERATURE SURVEY...17

2.1 GRAPH COLORING USING THE EXHAUSTIVE SEARCH (BACKTRACKING)17

2.2 LOCAL SEARCH METHOD ...20

2.3 GREEDY COLORING...21

CHAPTER THREE: THE MODIFIED GRAPH COLORING ALGORITHM.25

3.1 SATURATION DEGREE ...25

3.2 GRAPH COLORING USING THE MODEFIED ALGORITHM.....................28

3.3 CLIQUE DETECTION USING THE MODEFIED ALGORITH.............................32

3.3.1 Graph partitioning:..32

3.3.2 Clique Finding ..34

www.manaraa.com

VIII

3.3.3 Clique Finding Evaluation ..38

CHAPTER FOUR:IMPLEMENTATION ..40

4.1 GRAPH GENERATION...40

4.2 NODE CALSS:...46

4.3 GRAPH CLASS..48

4.3 FIXEDVALUES CLASS ...49

4.4 GRAPHREADER CLASS..50

4.5 LARGESTDGREE CLASS ...51

4.6 MODEFIEDLARGESTDEGREE CLASS ..54

CHAPTER FIVE: COMPLEXITY AND PERFORMANCE ANALYSIS56

5.1 COMPLEXITY ANALYSIS ..57

5.1.1 Complexity of the LDC algorithm..57

5.1.2 Complexity of LDSC algorithm ...58

5.2 PERFORMANCE ANALYSIS ...58

CHAPTER SIX: CONCLUSIONS AND FUTURE WORKS71

6.1 SUMMERY ...71

6.2 CONCLUSIONS ...72

6.3 FUTURE WORK ..73

 REFERENCES…………………………………………………………………….73

www.manaraa.com

IX

LIST OF FIGUERS

Figure 1.1: Indirectgraph, Node, Edge,and Adjacent Nodes………………. 2

Figure 1.2: Direct graphs and Indirect graphs…………………………… 3

Figure 1.3: An indirect weighted graph G represents exam schedule.…….. 4

Figure 1.4: Adjacency matrix represents indirect graph……………............ 5

Figure 1.5: Examples of invalid and valid graph coloring……….…………….. 5

Figure 1.6: Map Coloring ………………….……………………………………. 6

Figure 1.7: Examples of cliques…..……………………………………………… 7

Figure 1.8: An indirect unweighted graph G represents exam schedule … 9

Figure 1.9: Graph coloring example using the largest degree algorithm……. 12

Figure1.10: Finding 4-clique in a graph of 7 vertices using the brute force … 14

Figure 2.1: Solving the maze using the backtracking method……………… 17

Figure 2.2: The exhaustive search algorithm for solving the graph coloring… 19

Figure 2.3: Using the min-conflicts algorithm to improve the coloring……… 21

Figure 2.4: Predefined orders of visiting graph nodes…………………………. 22

Figure 2.5: Predefined orders of colors…………………………………………. 23

Figure 3.1: Saturation Degree……………..…………………………………….. 25

Figure 3.2: Dsatur Algorithm…………….………………..……………………. 27

Figure 3.3: Graph Coloring using the modified algorithm…………….………. 31

Figure 3.4: Graph Division……………………….……………………………… 33

Figure 3.5: Recoding the coloring track using the ColorsOrderLis…..………. 37

Figure 4.1: Indirect graph and its corresponding adjacency matrix………. 41

Figure 4.2: Heavy density graph, Regular density and Low density graph….. 42

www.manaraa.com

X

Figure 4.3: GraphGenerater class ………………………………......................... 42

Figure 4.4: CreateGraph calling statements…….……………………………… 43

Figure 4.5: CreateGraph body………………………………….……………….. 44

Figure 4.6: WriteInBenchMark Method calls…………………………............... 45

Figure 4.7: WriteInBenchMark body…………………………………………… 45

Figure 4.8: Screenshot for a benchmark……………...………………………… 46

Figure 4.9: GraphReeader.java…………………………………………………. 51

Figure 4.10: Compare method…..………………………………………………. 52

Figure 4.11: ColorNode method…………………………………………………. 52

Figure 4.12: CCI_Dev_Conv Method...………………..……………………... 54

Figure 4.13: Compare method………………………..…………………………. 54

Figure 5.1: LDC and LDSC Coloring – Low Density Graphs ………………. 64

Figure 5.2: LDC and LDSC Coloring – Regular Density Graphs…………… 64

Figure 5.3: LDC and LDSC Coloring – Heavy Density Graphs……………... 65

Figure 5.4: Clique Conformance Index – Low Density Graphs……………… 66

Figure 5.5: Clique Conformance Index – Regular Density Graphs…………. 66

Figure 5.6: Clique Conformance Index –Heavy Density Graphs……………. 67

Figure 5.7: 1000 Nodes Low, Regular, and Heavy Density Graphs…………. 67

Figure 5.8: Coloring Time for Backtracking Algorithm……………………... 69

www.manaraa.com

XI

LIST OF TABLES

Table 4.1: Node.java Attributes…………………………………..…………... 46

Table 4.2: Node.java Methods………………………………..………………. 47

Table 4.3: Graph.java Attributes………………………….….……………… 48

Table 4.4: Graph.java Methods……………….……………………………… 49

Table 4.5: FixedValues.java Attributes………………….…………………… 49

Table 5.1: First Experiment ………………………………...………............... 59

Table 5.2: Second Experiment……..………………….…..………………….. 60

Table 5.3: Third Experiment ………………………..…….............................. 61

Table 5.4: Average results for Three Experiments ………………................. 63

Table 5.5: Comparing LDC and LDSC with Backtracking Algorithm……. 68

www.manaraa.com

XII

LIST OF ABBREVIATION

CCI Clique Conformance Index

GCP Graph Coloring Problem

SD Saturation Degree

LDC Largest Degree Coloring

LDSC Largest Degree Saturation Degree

www.manaraa.com

XIII

ABSTRACT

Maximum Clique Conformance Measure for Graph Coloring

Algorithms.

By

Abdel Mutaleb M. Al-zou'bi

Supervisors

Prof. Mohammad Al-Haj Hassan

Dr. Mohammad Malkawi

The graph coloring problem (GCP) is an essential problem in graph theory [22], it has

many applications such as the exam scheduling problem [38], register allocation

problem[2], timetabling [15], and frequency assignment[19]. The maximum clique

problem is also another important problem in graph theory and it arises in many real

life applications like managing the social networks[7]. These two problems have

received a lot of attention by the scientists, not only for their importance in the real life

applications, but also for their theoretical sides [31,32,32,33,34,35,36].

Unfortunately, solving these problems is very complex, and the proposed algorithms

for this purpose are able to solve only the small graphs with up to 80 nodes. On the

other hand and in order to module the real life applications we need graphs of

hundreds or thousands of nodes.

This thesis presents a new algorithm for solving these hard problems, the new

algorithm will run in a considerable time and it shows a competitive results for both of

www.manaraa.com

XIV

special purpose graphs as well as the general random graphs. It also introduces a new

measure for the deviation of the algorithms from maximum clique based coloring.

Keywords: Clique conformance Index, Convergence Rate, Deviation Rate, Graph,

Graph Coloring Problem, Maximum Clique Problem, NP-Complete Problems.

www.manaraa.com

XV

����

 ���	�
��س ��ا"! �ارز���ت ����� ا
�����ت �� ا
���� ا
���� ا��� ا$�

 ا
�&ا%�

 إ�)اد

����
) ا
���, �+�) ا

 إ.&اف

 ا���4ذ ا
)آ��ر �+�) ا
+�ج 0/�

 ا
)آ��ر �+�) ��	�وي

 ����� ���	
 �� $�# ��"! � � �ا������ت
� ا��	�آ� ا������� �� ����� ا������ت��

	��� "!و�� ا&
%���ت �(
 و
	��� � و
	��� إدارة ا�+اآ�ة�ا��)��
� ا����(�ت ا������

 ا������ ا��ا89آ�� ان
	��� �%!�! ا���6��1 . و
	��� ��3�4 ا��ددات���2ا�1!اول ا�/

 وه� �!>� �� ا��)��
� ا����(�ت ا������ت���� ا�;�
� ا��	�:ت ا�� �� �� �����

��6��� إدارة ا�	���ت ا<"(
� �ن ا��	���$��? ه��. ا������ �@ �
ن ���9)��
� ا&ه��م

 B�� Cي ا�;�ا�����ء وذ��ا��2 G��1ا� �� �� .���ا ا�I اه�� �� ا������ �%�G وإ��� Hه��

�(!ا "!ا ���� �� وأن ا���ارز
��ت ا��(!
� � +ا ا�L�ض ه� �إ& أن ا��1د $� � ���� ا��	��

 �� �(�� ���ن
� ا������ت�(8 �%� ا��	�آ� ا�� �. آ%! اI�6رأس �LN 80�ة �(8 وا�

�ج ا�I �ا&>�ى��2�9 �� ا�1 � %� �2�T� ���6 U���� اي �"+�� �
����ت
� ا" �
��ن �

�Xت او أ��ف ا�2(�ط .

��� �� و@?
�(�ل ��(!م ه+Z ا�����Y >�ارز
�� "!�!ة �%� ه���� ا��	���� ا��4����

 �1���
 I�6 ة ���1] ا��ا������تو�!� � ا�(!رة!�" \��اع ذات ا�%1^ ا����� وا[�ت �

 .���تا���

www.manaraa.com

1

CHAPTER ONE

INTRODUCTION

This work represents an analysis and improvement for what had been proposed by Dr.

Mohamad Malkawi and Dr. Mohammad Al-HajHasan in their paper [37]. In that paper

they proposed a new algorithm for solving the graph coloring problem and they used the

coloring algorithm to provide a solution for the exam scheduling problem. In this thesis

we introduce a new improvement for that algorithm. We also provide an analysis for the

original and the improved algorithm in terms of how closely the algorithms follow the

maximum clique base coloring of a graph by introducing a new measure for the

deviation of the algorithms from maximum clique based coloring.

1.1 PRELIMINARIES

This section will be devoted to review some important concepts related to the subject of

the thesis, together with some examples.

1.1.1 GRAPHS

An indirect graph G is an ordered pair (N, E) where N is a set of Nodes and E is a set of

non-direct edges between nodes. Two nodes are said to be adjacent if there is an edge

between them. See Figure 1.1 for illustration.

www.manaraa.com

2

2

3

An indirect graph G,
composed from 6 nodes

and 8 edges.

Nodes 2 and 3 are

adjacent.

1

2

3

4

6

5

Edge

Node

Depending on the type of edges between nodes, graphs may be classified as directed

graphs or indirect graphs, in the direct graphs each edge represents a relationship

between one node with another and not vice versa; in other words there is a relation

between two nodes in one way. While in the indirect graphs each edge represents two

relationships between both of the connected nodes. See Figure 1.2 which represents two

graphs the first is indirect graph while the second is a direct graph. In the rest of this

thesis we will not address the direct graphs; our concentration will be only on the

indirect graphs

Figure 1.1 Indirectgraph, Node, Edge,and Adjacent Nodes

www.manaraa.com

3

Another classification for graphs, which also depends on the nature of edge, is based on

the concept "edge's weight". According to this classification, graphs can be weighted

graphs or unweighted graphs. Edge is considered weighted when it is associated with

any valuable symbol such as numbers or characters. See Figure 1.3, which represents an

example for a weighted graph for an exam schedule in a particular university; nodes in

this graph stand for a class exam name, and weights on edges stand for the number of

students who are common in both classes.

1

2

3

4

6

5

1

2

3

4

6

5

An indirect graph G. Every
edge represents a relation in
two ways. For example, the
edge between node 1 and node
2 means that there are two
relations, the first connects
node 1 with node 2 while the
second connects node 2 with
node 1.

A direct graph G. Every edge
represents only a single
relation. For example, the edge
between node 1 and node 2
means that there is only one
relation which connects node 1

with node 2.

Figure 1.2 Directed graphs and Indirect graphs Figure 1.2 Direct graphs and Indirect graphs

www.manaraa.com

4

The importance of studying graphs comes from its ability to model many problems. The

philosophy of graphs states that there are many nodes and there are relations between

them. Many applications with distributed elements and relations between these elements

can be modeled as a graph.

Graphs can be represented in computer systems in many ways such as adjacency matrix;

in this format, an [n, n] matrix is used to represent the graph, where n is the number of

nodes. Matrix element [x , y] is one if and only if there is a relationship between node x

and node y. and it is 0 otherwise See Figure 1.4 for illustration.

Math

IT

Arab

101

Eng

101

C++

Java

20 5

15

6

2

12 9

25

Figure 1.3 an indirect weighted graph G represents exam schedule in a

particular university.

www.manaraa.com

5

1.1.2 GRAPH COLORING

General graph coloring is the process of labeling the graph's elements with special

labels (usually called colors) under special conditions. Node coloring is the process of

coloring the nodes such that no two adjacent nodes have the same color. See Figure 1.5.

An interesting coloring problem is the four colors theorem [9]. The theorem resulted

from the scientist Francis Guthrie attempts in coloring the countries of England with

four colors. He noted that four colors are enough to color the map so that no countries

having the same border share the same color; see Figure 1.6. This suggestion was still

Node 0 1 2 3

0 0 1 1 1

1 1 0 1 0

2 1 1 0 1

3 1 0 1 0

1 3

0

2

1 3

0

2

1 3

0

2

Invalid coloring, two
adjacent nodes have
the same color.

Valid coloring.

Figure 1.4 Adjacency matrix represents indirect graph

Figure 1.5 Examples of invalid and valid graph coloring

www.manaraa.com

6

under study till 1879; in this year Alfred Kempe [25] published a paper that claimed he

proved the theorem. The graph coloring problem continued to be under research by

mathematical scientists until it finally was proved numerically in 1976 by the computer

scientists Kenneth Appel and Wolfgang Haken [3,4].

1.1.3 CLIQUES

Clique in an indirect graph G is a subset of nodes N such that for every two nodes in N,

there exists an edge connecting both nodes, while the maximum clique is that one which

has the maximum number of nodes. See Figure 1.7. Luce & Perry 1949 were the first

who used the term "Clique" in graph theoretic, in their work they have used cliques in

modeling social networks (groups of people who all know each other) [28].

Figure 1.6 Map Coloring

www.manaraa.com

7

1.1.4 P, NP, NP-COMPLETE PROBLEMS

This section will introduce three types of complexity classes, P, NP and NP-Complete

problems. This brief introduction aims to give the reader good idea about these topics in

order to make him/her able to understand any of these terms in the context of this thesis.

In studying these complex classes of graphs we focus on two important things, first is

the required time (how many steps does it take to solve the problem), second is the

required space (how much memory does it take to solve the problem) with more

emphasis on the time factor since the huge progress in manufacturing storage devices

reduces the importance of memory space.

The Problems with (P) complexity are those which can be solved using deterministic

sequential solution in polynomial time. In this definition there are three concepts:

deterministic, sequential and polynomial. Deterministic is a concept in which there is

only one possible action that the system (a state machine) might take in response to any

Clique of 2 nodes Clique of 3 nodes Clique of 4 nodes

Maximum clique

Figure 1.7 Examples of cliques

www.manaraa.com

8

input. For example, let's take the quick sort algorithm. The algorithm is composed of

ordered steps of statements that will be repeated for any input to produce the required

output. Sequential means that the input for next step is the output of the current step.

Polynomial time refers to the number of steps required to solve the problem and it is

represented by the following notation O (nk) where k >=0.

The NP (Nondeterministic Polynomial) problems are these which can be verified very

quickly but they can't be solved quickly. For example let S= {3,4,2,1,-10,15,8}. The

problem is to find if a subset of the set S has add up to zero, this can be checked

(verified) quickly because the result of adding the first five elements is zero. However

finding such elements seems to be difficult; hence this problem is NP problem.

Despite of the class complexity P seems to be an independent class but it is contained

into the class NP which contains many other problems such as the sales man problem,

the graph coloring problem and the maximum clique problem. The hardest problems in

the NP class are called the NP-complete problems; these problems don’t have

algorithms that run in a polynomial time.

1.2 THE PROBLEM

This thesis will address the graph coloring problem and the maximum clique problem.

In particular, this study will focus on the efficiency of the largest degree algorithm as

outlined in [37], especially when dealing with any general purpose indirect randomly

generated graphs as well as special purpose graphs. The study will also introduce a new

improvement on that algorithm; this improvement will reduce the number of colors used

in the coloring process. The third issue addressed in this thesis is the ability of both

www.manaraa.com

9

algorithms to match the maximum clique-based coloring of a graph. The study will

introduce a measure for the deviation of the algorithms from maximum clique based

coloring. This measure can be further used to measure the optimality of graph coloring

algorithms. These issues are further explained in the following subsections.

1.2.1 THE LARGEST DEGREE ALGORITHM

 (Malkawi, et. al; 2008) introduced this algorithm for exam scheduling using graph

coloring. The algorithm's idea was derived from the properties of exam scheduling,

namely, universities tend to first schedule classes with relatively large number of

students and large cross registration with other courses. Such courses, in graph terms,

are said to have large degrees. Taking care of such courses first, and then moving on to

take care of all the courses in which students in the first course are registered, allows for

resolving conflicts between exams in a systematic manner. See Figure 1.8

Math

101

C++

Phys

101

Arab

101

Eng

101

Data

Base

Sun 8 – 10 am

Mon 10 – 12 am

Sun 10 – 12 am

Figure 1.8 an indirect unweighted graph G represents exam schedule in a particular university.

www.manaraa.com

10

Important notes on the previous Figure:

1. Each node represents a specific course.

2. Each color represents an exam time slot.

3. Edges between pairs of nodes indicate that there are some common students

registered in both courses, so they have both exams, and thus both exams cannot be

scheduled at the same time.

4. According to graph theory, no two adjacent nodes should have the same color, which

means no two exams that have common students should be held at the same time.

5. A node with larger degree represents a course in which students are registered to

many other courses

By applying the largest degree algorithm on the previous graph, the coloring process

will start by sorting the courses in decreasing order according to the number of adjacent

nodes (degree); if two nodes have the same degree, then choose the one with the largest

ID, so the courses will be sorted as follow Math 101, Phys 101, Eng 101, Arab 101,

Data Base, C++. The previous list will be saved in a list, for example (MainList), after

that the first course in the MainList (Math 101) will be selected to be colored first, it

will be colored with the minimum available color (Red). Next courses that are adjacent

to the selected node will be sorted in decreasing order and will be saved in another list,

for example (SubList)(Phys 101, Eng 101, Arab 101), and then courses in this list will

be colored one by one by choosing the minimum available color for each course. After

coloring all courses in the SubList, the algorithm will pick the next course form the

MainList (Phys 101). And so on. Following is a description of the algorithm:

1. Sort nodes based on degree in descending order.

2. Select the first node in the list; color the node with smallest available color (use

colors, 1, 2, 3….)

www.manaraa.com

11

3. List the neighbors of the selected node.

4. Sort the neighbors of the selected node in descending order based on degree, if two

or more nodes have the same degree, then the one with the largest ID is ordered first.

5. Color the neighbors of the selected node, starting with the first node in the list, for

each node; check all its neighbors which have already been colored. Color the node

with the smallest available color.

6. When all neighbors of the selected node have been colored; go to the next node in

the main list of nodes.

7. Go to step 3.

8. Stop when all nodes have been colored. See Figure1.9.

www.manaraa.com

12

Generally, graphs can be classified under two general categories, the first type is special

graphs where the maximum number of colors needed for these graphs is determined

directly according to the type of graph. For example, the 5-coloring graphs need 5

colors at most to color the graph, while the 4-coloring planer graphs need 4 colors, and

1

2

3

4

6

5

Main List

1

2

3

4

6

5

1

2

3

4

6

5

5 6 3 2
Sub List of

'Node 1'

1

2

3

4

6

5

5 6 3 2

1

2

3

4

6

5

1

2

3

4

6

5

5 6 3 2

1 3 2 4 5 6

1

2

3

4

6

5

After finish all nodes
in the SubList the
next node will be
selected from the
MainList

5 6 3 2

1 2 4

Sub List of
'Node 1'

Sub List of
'Node 1'

Maximum

Minimum

Figure 1.9 Graph coloring example using the largest degree algorithm

Sub List of
'Node 3'

Sub List of
'Node 1'

www.manaraa.com

13

so on. The second type is the general purpose graphs, this type of graphs doesn't have

any rules that constraints the connection between its nodes. One way to know the

minimum number of colors needed to color these graphs is based on the maximum

clique(s) in the graph.

The largest degree algorithm has been shown to succeed in coloring the special graphs

with the minimum number of colors [38]. The algorithm will color one of the famous 5-

coloring graphs with 4 colors. The algorithm will also color all 4-coloring planer graphs

with exactly 4-colors. Graphs, known as 6-triangulation graphs will be colored with 5

colors. Such graphs are known to be 5-colorables.

The first problem addressed in this thesis is the extent of the success of the largest

degree algorithm as well as the modified algorithm in coloring the general purpose

graphs with the minimum number of colors.

1.2.2 CLIQUE DETECTION PROBLEM

The problem of finding the maximum clique in an indirect graph is considered one of

the NP-complete problems. This means that there is no known algorithm for solving this

problem in a polynomial time, except for those which have been developed for

specialized graphs such as the planer graphs or perfect graphs where the problem can be

solved in a polynomial time. Solving this problem can also be done in polynomial time

if k is constant, where k is the number of nodes in the clique; in this case all subgraphs

of at least k nodes will be checked whether it form a clique or not. This method is called

the brute force algorithm See Figure 1.10 [21].

www.manaraa.com

14

In this thesis, we will develop a measure to evaluate the level of proximity of coloring

algorithms to the maximum clique detection algorithm. The measure will show if the

coloring algorithm colors the nodes of the maximum clique first, and if not, it will show

the level of deviation from the clique.

Figure 1.10 Finding 4-clique in a graph of 7 vertices using the brute force algorithm. This

required checking all the 4 nodes combinations in order to determine if any combination

compose a clique or not. Number of checks is equal to 35.

www.manaraa.com

15

1.2.3 THE MODIFIED LARGEST DEGREE ALGORITHM

As mentioned above, the largest degree algorithm starts by sorting the nodes in

decreasing order, then it assigns the minimum available color to the first node in the list,

then it lists the neighbors of the selected node and sort them in decreasing order based

on the degree, next it colors the neighbors of the selected node starting with the first

node in the list, for each node, it checks all its neighbors which have already been

colored, and then it colors the node with the smallest available color.

The problem arises when two or more nodes have the same degree; the question is

"Which node should be chosen first?" The largest degree algorithm assumes that the

node which has a greater ID number must be chosen first, this assumption has no impact

on the performance of the graph coloring process.

In this thesis we provide a new criteria that will allow the algorithm to choose the next

node more intelligently, which will have an impact on the performance of the algorithm.

1.3 OBJECTIVES OF THE STUDY

The major objectives of this thesis are:

1. Evaluating the performance of the largest degree algorithm [38]

2. Developing an improvement version of the same algorithm.

3. Comparing the performance of the largest degree algorithm with the modified

algorithm in terms of number of colors needed to perform the coloring process.

4. Measuring the proximity of the largest degree algorithm (the original and the

modified) from the maximum clique delectability.

www.manaraa.com

16

1.4 SCOPE AND SIGNIFICANCE OF THE STUDY

This study will address a special kind of problems which is categorized under the NP-

completeness problem (Hard problems). Until now, no better algorithm than an

exponential time algorithm for such problems is known, although many heuristic

algorithms give us reasonably good approximations of the optimal solutions. NP-

completeness is thought as a class in which if one of such problems is solved in

polynomial time, all instances of NP-complete problems are reducible to a polynomial

time problem. Then, it is expected to be a remarkable contribution to modern science

field.

The study will focus on analyzing the behavior of the underlined coloring algorithm in

order to get some results about its ability to follow the clique track while coloring the

vertices, and then we can determine the effectiveness of this algorithm in finding the

minimum number of colors needed to coloring the graph; by demonstrating this factor

we can make use of it in modeling many practical problems. Managing social networks

over the internet is one of the challenging problems that can be modeled using the graph

coloring and the maximum clique, the group which contains the maximum number of

people and each one in this group knows all the participants can be modeled as the

maximum clique, and the groups that contain fewer participants and each one knows all

members can be modeled as cliques. Then we can manipulate these cliques in such

social networks in a rather smooth manner [7].

www.manaraa.com

17

CHAPTER TWO

LITERATURE SURVEY

In this chapter we present a brief description of what has been done by other scientists

in this area of research. We introduce some methods addressing the graph coloring

problem such as the backtracking method, the local search method and the greedy

method.

2.1 GRAPH COLORING USING THE EXHAUSTIVE SEARCH

(BACKTRACKING)

One of the most well known methods in graph coloring is the exhaustive search method

used for solving the maze problem; see Figure 2.1. The process starts by choosing

particular path, if you reach a dead point, you need to backward one step to the last joint

and choose another path; if you reach the required destination then you solve the maze,

else if you continue to go backward till you reach the start point, then the maze is

unsolvable.

www.manaraa.com

18

This is very similar to the graph coloring problem, See Figure 2.2. The exhaustive

search algorithm is very trivial but at the same time it is very costly, simply it is

enumerating all possible choices to color the graph with a minimum of k colors. The

process starts by coloring the nodes one by one with initial value of k = 2; if you reach a

situation where you can't continue, which means it is impossible to color the next node

without incrementing k by one, you have to go backward one step and retry with

another choice. If you continue to go backward and retry all the choices till you reach

the starting node, then the graph can't be colored with k colors, and we should increment

k by one.

Figure 2.1 solving the maze using the backtracking method

www.manaraa.com

19

A-Using the exhaustive
search to color indirect
graph of 27 nodes with only
3 colors. Nodes will be
colored line by line from
bottom to up.

B –the problem arises when
attempting to color the node
which is in the circle. In
order to solve this problem
we have to backward a step
and retry another coloring
choice.

C–Backward two steps,
trying to find the solution.

1 2 3 4 5

6

D–Another coloring has
been chosen but the problem
still exist.

E–Finally; and after (65448)
steps the solution was
found.

Figure 2.2 The exhaustive search algorithm for solving the graph coloring

www.manaraa.com

20

The main drawback of this method is its complexity; this method will be run in

exponential time (kn), which means that this algorithm is applicable to small graphs.

Real world applications such as social networks are relatively large graphs and the time

complexity is prohibitive when using exhaustive coloring methods [13].

2.2 LOCAL SEARCH METHOD

Local search algorithms are used in solving many NP-complete problems such as the

traveling sales man problem and the course scheduling problem as well as the graph

coloring problem. Local search algorithms are generally divided into two categories, the

first is used to optimize the results which are generated by other algorithms. The second

category consists of standalone algorithms which are considered more complex.

Figure 2.3 presents an example of the min-conflicts algorithm [41]. This algorithm

starts by a valid coloring which is generated from applying a particular algorithm, and

then attempts to reduce the number of colors in this graph. This reduction will lead to a

number of conflicts that should be removed by the algorithm. At the end of this

algorithm a better coloring could be produced.

www.manaraa.com

21

2.3 GREEDY COLORING

A greedy algorithm is any algorithm that follows the problem solving heuristic of

making a local optimal choice at each stage [23]. In general, greedy algorithms don’t

use the minimum number of colors; however greedy algorithms manage to go around the

NP problem, by coloring the graph with few colors in a considerable time.

1 5

6

4

3 2

A-Coloring resulted
from applying a
particular algorithm.

1 5

6

4

3 2

1 5

6

4

3 2

1 5

6

4

3 2

D-Assigning the green
color to node 4 will
resolve the conflict
and producing a better
coloring than the
previous one (which is
in A).

C-Trying to resolve this
conflict by coloring the
node 5 with blue. This
will cause the second
conflict between node 5
and node 4.

B-Trying to reduce the
number of colors by
coloring the node number
6 with green instead of
black. This will cause the
first conflict between
node 5 and node 6.

Maximum

Figure 2.3 The min-conflicts algorithm.

Minimum

www.manaraa.com

22

Practically, the greedy algorithm takes every node in turn in some predefined order and

tries to color this node with one of the already consumed colors; if it's not possible to use

any of the consumed colors it will assign a new color to the node. The predefined order

particularly important for the coloring process. Next, we address two types of this

“predefined order” policy, the first is regarding the nodes, and the second is regarding to

the colors.

Visiting the nodes in different orders will produce different coloring scheme, with

different chromatic numbers. For example let G be an indirect graph of six nodes (See

Figure 2.4.a), and let the order of visiting the nodes be (1, 2, 3, 4, 5, 6). In this example,

4 colors are required to complete the coloring of the graph. Let the second order be (6,

5, 4, 3, 2, 1); this order will reduce the number of required colors from 4 colors to only

2. See Figure 2.4.b. Note that number inside the node doesn't represent value of node

rather it indicates the order of this node in visiting.

1 5

5

6

4

3 2

A-Bad order of nodes
produces a costly coloring.

B-Good order of nodes
reduces the number of
colors.

6 2

1

3

4 5

Maximum

Minimum

Figure 2.4 Predefined orders of visiting graph nodes

www.manaraa.com

23

The previous example has illustrated the importance of choosing the best order for

nodes. Many algorithms have been proposed for this purpose, and the algorithm in this

thesis is one of these algorithms.

The second type of predefined order is regarding to the colors, the importance here is on

how to find the best criteria for choosing the next color in order to reduce the number of

colors.

To clarify the idea let G be an indirect graph of six nodes, (See Figure 2.5.a), and let us

consider the minimum available color to be the criteria that will be used to choose the

next color. The process starts by coloring node 1 with red which is the minimum color,

then it colors node 2 with blue which is the minimum available color after the red color

has been taken, after that the available color is the red which is assigned to node 3, node

4 is colored with the available color which is the blue, then node 5 is colored with green

because there is no available colors, finally node 6 is colored with another new color

which is the black. As a result we need four colors to complete the process.

1

6

2

5

3 4

A- This coloring
requires four colors.

B- This coloring requires
three colors.

1

6

2

5

3 4

Figure 2.5 Predefined orders of colors

www.manaraa.com

24

However in the second graph (See Figure 2.5.b) the strategy of choosing the next color

is different. The new strategy states that there is no conditions of choosing the next

color as long as the next color is legal for coloring. As a result of the new strategy node

4 is colored with black instead of blue (which is the minimum available according to the

previous strategy), and the number of required colors is reduced to three instead of four.

www.manaraa.com

25

CHAPTER THREE

THE MODIFIED GRAPH COLORING ALGORITHM

In chapter one we gave a brief description of the largest degree algorithm. In this

chapter we will introduce the modified algorithm in more details. This chapter will be

divided into three sections; the first section introduces the concept of degree saturation;

the second section explains how the modified algorithm proceeds to color the graph; the

third section explains how the modified algorithm helps in solving the maximum clique

problem.

3.1 SATURATION DEGREE

In 1979 the scientist Brelaz introduced a new algorithm for graph coloring [11]. That

algorithm basically depends on the Saturation Degree (SD) of every node. The term

Saturation Degree refers to the number of differently colored nodes adjacent to a

particular node. See Figure 3.1 for illustration.

X Y Z

The saturation degree
of X is 2.

The saturation degree
of Y is 1.

The saturation degree
of Z is 1.

Figure 3.1 Saturation Degree

www.manaraa.com

26

According to the SD approach nodes with larger SD will be colored first. Following is a

description of the algorithm, based on the concept of SD:

1. Arrange the nodes by decreasing order of degrees.

2. Color a node of maximal degree with color 1.

3. Choose a node with a maximal saturation degree. If there is equality, choose any

node of maximal degree in the uncolored subgraph.

4. Color the chosen node with the least possible (lowest numbered) color.

5. If all the nodes are colored, stop. Otherwise, go back to 3.

To clarify the idea of this algorithm, See Figure 3.2 which explains the algorithm step

by step.

www.manaraa.com

27

According to [11], the SD is exact for the bipartite graphs (special type graph), it also

produces a good coloring quality for the general purpose graphs and it could be run in O

(n3).

D

B C

E

A

C should be colored
first because it has the
largest degree

A, B , D, E, and H have
the same saturation
degree which is equal to
1. . Select node A for
coloring (minimum ID
number) and assign the
color blue to node A

D has a saturation
degree of 2, which is
the maximum. D will
be colored with the
minimum available
color (Blue)

D

B C

E

A

D

B C

E

A

D

B C

E

A

D

B C

E

A

Finally E will be
colored with the
minimum available
color (Blue) .

D

B C

E

A

Maximum

Minimum

Graph is colored

B has a saturation degree
of 2, which is the
maximum. B will be
colored with the
minimum available color
(Green)

Figure 3.2 the SD approach

www.manaraa.com

28

3.2 GRAPH COLORING USING THE MODEFIED ALGORITHM

The need for this modification arises when two or more nodes have the same degree, the

original algorithm chooses the one with the larger (or lowest) ID, which has no impact

on the coloring quality. The modified version uses the SD concept for determining the

next node to be colored.

The algorithm states that if two or more nodes have the same degree, then the node

which has fewer available colors should be colored first. In other words if two or more

nodes have the same degree, then the node which has larger saturation degree will be

colored first. Following is a description of the algorithm:

1. Sort nodes based on degree in descending order.

2. Select the first node in the list; Color the node with smallest available color (use

colors, 1, 2, 3….).

3. List the neighbors of the selected node.

4. Sort the neighbors of the selected node in descending order based on degree, if two

nodes have the same degree, choose the node which has a greater saturation degree.

5. Color the neighbors of the selected node, starting with the first node in the list. For

each node; check all its neighbors which have already been colored. Color the node

with the smallest available color.

6. When all neighbors of the selected node have been colored; go to the next node in

the main list of nodes.

7. Go to step 3.

8. Stop when all nodes have been colored.

www.manaraa.com

29

Figure 3.3 shows an example of the modified algorithm, it starts by ordering the nodes

in the main list in a decreasing order based on the degree of each node. The first node in

the list (C) is selected to be colored with the minimum available color (Red). Then the

neighbors of (C) are sorted in a sublist according to the degree of each neighbor. See

Figure 3.3.a. The first node in the sublist (B) is selected to be colored with the minimum

available color (Blue), then the sublist and the main list are reordered based on the

degree and the saturation degree. Note that the sublist puts D before E and H, despite of

having the same degree; that's because D has a greater saturation degree than E and H.

See Figure 3.3.b. in the next step, D is colored with a new color (Green), this color is

chosen because Red and Blue were taken, and so the minimum available is the green

color. See Figure 3.3.c.

Figures 3.3.d-g are repetitions for the previous steps; in 3.3.g the algorithm has colored

all of the sublist nodes, which are related to node C and it will proceed with the next

node in the main list. The next node in the main list is B which is already colored.

Figure 3.3.h represents the sublist for B, it includes C, D, A, and G, all of which are

colored except G which will be colored with red. Figure 3.3.i represents the next node

in the main list (D), which is already colored. The last Figure 3.3.j represents the last

step of the algorithm; which colors the last node in the sublist.

www.manaraa.com

30

-a-

D

B

F

C

G

E

H

A I

C B D E H A G I F

D

B

F

C

G

E

H

A I

E H B D A I

1 1 1 1 1 1

D

B

F

C

G

E

H

A I

D

B

F

C

G

E

H

A I

D

B

F

C

G

E

H

A I

3 3 4 3 2 2Degree

E H B D A I

1 1 1 2 2 1

3 3 4 3 2 2Degree

Sub List of
'Node C'

SD SD

E H B D A I

1 2 2 2 2 2

3 3 4 3 2 2Degree

Sub List of
'Node C'

SD

Maximum

Minimum

E H B D A I

1 1 2 2 2 1

3 3 4 3 2 2

-b-

-c- -d-

Sub List of
'Node C'

Degree

Sub List of
'Node C'

SD

Main List

www.manaraa.com

31

Sub List of
'Node C'

-e- -f-

Degree

SD

-g-

Main List

Degree

SD

Sub List of
'Node B'

F Main List

Degree

SD

F

Figure 3.3 Graph Coloring using the modified algorithm

D

B

F

C

G

E

H

A I

D

B

F

C

G

E

H

A I

D

B

F

C

G

E

H

A I

D E C B H A G I

2 2 2 2 2 2 21 1

3 3 6 4 3 2 22 1

D

B

F

C

G

E

H

A I

D

B

F

C

G

E

H

A I

 SD

D AC G

2 2 2 1

Degree 3 2 6 2

E H B D A I

2 2 2 2 2 2

3 3 4 3 2 2

E H B D A I

2 2 2 2 2 2

3 3 4 3 2 2Degree

Sub List of
'Node C'

SD

D E C B H A G I

2 2 2 2 2 2 2 1 1

3 3 6 4 3 2 22 1

Sub List of
'Node D'

SD

B F C

2 1 2

 Degree 3 2 6

D

B

F

C

G

E

H

A I

-h-

-i- -j-

www.manaraa.com

32

3.3 CLIQUE DETECTION USING THE MODEFIED ALGORITHM

The second problem addressed in this thesis is the maximum clique detection; in the

preceding chapters we have defined this concept. In this section we will explain how we

can benefit from the modified algorithm in solving the maximum clique detection

problem.

3.3.1 GRAPH PARTITIONING:

Graph will be partitioned into smaller subgraphs, each one is composed of a node (later

will be called the leader node) and all of its adjacent nodes. For example let G be an

indirect graph, and let N be the set of nodes in the graph, Applying the partitioning

process on G produces N subgraphs. Following is graphical illustration of the

partitioning procedure.

www.manaraa.com

33

A

E

B

D

C

A is the leader node,

A

B

C

D

B is the leader node

A

B

C

D

C is the leader node

A

B

C

D

D is the leader node

A

E

F

E is the leader node

E

F

F is the leader node

A

E

B

F

C

D

The original graph

Figure 3.4 Graph Partitioning

www.manaraa.com

34

The previous diagram shows how the indirect graph G which is composed of six nodes

produces six subgraphs of the described type, that is each subgraph consists of only

from the leader node and its neighbors.

3.3.2 CLIQUE FINDING

After partitioning the indirect graph into the N subgraphs of the described type, we will

apply the coloring algorithm on each subgraph. We begin with the subgraph whose

leading node has the largest degree; then we move to the next subgraph with the next

highest degree and so on, within each subgraph, we traverse the nodes starting from the

node with the largest degree and moving down to lower degree nodes.

When this algorithm was applied to special graphs [38], the algorithm produced

minimum number of colors. For general purpose graphs, we propose a new measure to

evaluate the efficiency of the algorithm. This measure depends on how closely the

algorithm colors the nodes of the cliques in the graph, starting with the largest clique

first.

The purpose of applying this algorithm is not to detect the exact clique in each

subgraph; rather the purpose is to analyze the improved algorithm in terms of how

closely the algorithm follows the maximum clique-based coloring of a graph.

In other words the clique of each subgraph will be known in advance using a particular

algorithm called the brute force algorithm. After applying both algorithms on the same

graph we will do a comparison between the two results. Upon this comparison we will

discover how closely our improved algorithm follows the maximum clique.

www.manaraa.com

35

The clique of each subgraph will be fully recognized and detected using a brute force

algorithm. When we apply our algorithm to the same graph, we will trace the coloring

path taken by the algorithm and test it against the cliques of the graph. A complete

matching exists if the algorithm colors all the nodes of the clique before it moves to

another subgraph. A partial matching exists when the algorithm colors nodes from the

clique and then moves to another set of nodes before it returns back to color the rest of

the clique nodes. The efficiency of the algorithm will be determined by the rate of

matching between the set of colored nodes and the nodes of the clique and by the

distance between the nodes colored outside the clique and the nodes of the clique.

If the clique has N nodes, and the algorithm colors M nodes first where M ≤ N then the

rate of convergence is given by ρ = M/N. The deviation rate between the clique and

node (γi) colored outside the clique is given by δ= [R(γi)-N]/ R(γi), where N is the size

of the clique and R(γi) is the order of coloring node (γi).

For example, assume that a clique in a 7 nodes graph has 4 nodes {1, 2, 3, 4}, (N=4)

and the algorithm colors the graph in the following sequence [1, 2, 4, 6, 7, 3, 5]. The

convergence rate ρ = [3/4] = 0.75. And the deviation rate between node 3 (colored

outside the clique sequence) is given by δ= (6-4)/6 = 0.33.

The average deviation rate is given by ∆ = i
N

i∑ =1
δ

The computation of the rate of convergence and the rate of deviation will not add to the

complexity of the algorithm except for record keeping.

The implementation of the algorithm proceeds as follows:

1. Let the list ColorsOrderList=Ø.

www.manaraa.com

36

2. Start the coloring process by coloring the leader node with the minimum color.

Then add it to ColorsOrderList.

3. Sort the neighbors of the leader node in a decreasing order based on the degree of

each neighbor, if two nodes have the same degree choose the node which has a

greater saturation degree.

4. Select the first node in the list, color it with the minimum available color, and then

add it to ColorsOrderList.

5. Repeat step 4 until all nodes are colored.

6. At the end compare ColorsOrderList with CliqueList and report the results. See

Figure 3.5

www.manaraa.com

37

Colors
Order A

Colors
Order A B

Colors
Order A E C

Colors
Order A B C D

Colors
Order A B C D E

Colors
Order A B C D E F

A

E

B

F

D

C

A

E

B

F

D

C

A

E

B

F

D

C

A

E

B

F

D

C

A

E

B

F

D

C

A

E

B

F

D

C

Figure 3.5 Recoding the coloring track using the ColorsOrderList

www.manaraa.com

38

3.3.3 CLIQUE FINDING EVALUATION

Evaluating the performance of the algorithm in detecting the clique depends on the

number of the nodes which are related to the same clique and which have been colored

before going outside the clique track, and the greater the number of colored nodes

which belong to the clique the better is the algorithm.

In other words, in order to check the performance of this algorithm we have to do a

comparison between the nodes in ColorsOrderList with the others in the CliqueList and

then report the results. For example the previous Figure produces the following

ColorsOrderList {A, B, C, D, E, F}, while the CliqueList is {A, B, C, D}, by comparing

each node in ColorsOrderList with all nodes in CliqueList, we have founded that our

algorithm has succeeded in detecting all nodes in the clique with the following

convergence rate :

ρ=M/N = 4/4 = 100%.

The second part of the evaluation is to count how many nodes are colored before

returning back to the clique nodes, i.e., the rate of deviation from the main course of the

clique (δ). For example let Clique1 be the first detected clique in the first subgraph and

let the CliqueList that represents this clique be {A, B, C, D} and let the ColorsOrderList

be {A, B, E, F, Q, R, C, D}. In this example, ρ=0.5; the algorithm succeeds in coloring

the first two nodes A and B which belong to clique1, then it colors E, F, Q and R before

returning back to C and D which belong to clique1. The distance of the first two nodes

in the clique A and B is equal to zero because they are colored within the clique order,

while the distances of node C and D are 2 and 3 respectively. The deviation rate for

www.manaraa.com

39

nodes C and D is given by δ1= 2/7 and δ2= 3/8 respectively. The average deviation rate

is ∆=(0.29+0.38)/2=0.33.

The convergence and deviation rates can be combined with one general index, used to

measure the overall efficiency of the algorithm. We call this index the Clique

Conformance Index (CCI) which is defined by: CCI = ρ/∆. In the above example, CCI =

0.5/0.33 = 1.5. The larger the CCI, the better is the algorithm. CCI accounts for odd

cases, such as when the convergence rate is very high say 0.9 (only node is colored

outside the clique). But the distance of this node is very large, say 0.9. Then CCI is

0.9/0.9 =1 (lowest index). However, if the node distance is small, say 0.1, then the CCI

index is 0.9/0.1 = 9.

In order to simplify the process, results will only be reported for the first subgraph

which contains the node with the largest degree. Chapter 4 explains the implementation

in more details.

www.manaraa.com

40

CHAPTER FOUR

IMPLEMENTATION

This algorithm has been implemented using JAVA programming language; this chapter

discusses the implementation details such as the data structure used to represent the

graph and the methodology used in generating graphs with different density. Also this

chapter provides explanation of some other important classes and methods.

4.1 GRAPH GENERATION

This is the first stage in the implementation process. In this stage a random indirect

graph with a variable size and density will be created, but before that we must firstly

choose the most appropriate data structure to represent the graph.

Graphs will be represented using the Adjacency Matrix which is a two dimensional

matrix of zeros and ones used to represent which nodes of a graph are adjacent to which

other nodes. A length of dimensions of adjacency matrix is equal to the number of

nodes in the represented graph. For example a matrix of 5*5 is representing a graph of 5

nodes.

The adjacency matrix will be filled up with random values of zeros and ones, so that

every entry has the potential to be assigned to zero or to one. The value of zero means

that there is no edge between the node which has a value identical to the row number

and the other node which has a value identical to the column number. While the value

www.manaraa.com

41

of one means that there is an edge between both nodes. Below is an example of graph

representation using the adjacency matrix. Note that the diagonal entries will be forced

to be zeros, since our graphs have no loops.

In the last Figure it's clear that the adjacency matrix is a symmetric matrix which means

that cells in the upper right are the same as the cells in the lower left, so in order to

reduce the processing time and the space required, only one of the two sides will be

filled up with values, while the second half will be ignored. See Figure 4.1.C

Size of the graph must be variable which means the user can enter any size he/she

wants, Density of the graph should also be variable, our algorithm will deal with three

types of densities; Heavy density, Regular density and Low density. Density here is

defined as the probability of a pair of nodes being connected, so that graphs with a

heavy density will have more edges than graphs with regular or low density, because the

probabilistic to find to connected nodes is greater. See Figure 4.2

1 3

0

2

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0 1 2 3

0

1

2

3

0 1 1 1

X 0 1 0

X X 0 1

X X X 0

0 1 2 3

0

1

2

3

-A- -B-

-C-

Figure 4.1 Indirect graph and its corresponding adjacency matrix

www.manaraa.com

42

public class GraphGenerater { 1

 public static void main(String args[]) throws IOException { 2

int NumberOfNodes = 1000; 3

double HeavyDensity = .75; 4

double RegularDensity = .5; 5

double LowDensity = .25;

6

int NumberOfEdges_H = 0; 7

int NumberOfEdges_R = 0; 8

int NumberOfEdges_L = 0;

9

int [][] HeavyMatrix = new int [NumberOfNodes][NumberOfNodes] 10

int [][] RegularMatrix = new int [NumberOfNodes][NumberOfNodes] 11

int [][] LowMatrix = new int [NumberOfNodes][NumberOfNodes] 12

 13

 for (int i = 0 ; i < NumberOfNodes ; i++){ 14

 for (int j = 0 ; j < NumberOfNodes ; j){ 15

 HeavyMatrix [i][j] = -1; 16

 RegularMatrix [i][j] = -1; 17

 LowMatrix [i][j]= -1; 18

 }} 19

Figure 4.3 GraphGenerater class (main method - declaration part)

The previous figure shows a section of code from GraphGenerater class, (lines 4-6)

contain the declaration of three double variables, and its assignments to specific values;

these variables are important to create variant types of graphs. Lines 7-9 contain a

Heavy Density Regular Density Low Density

Figure 4.2 Heavy density graph, Regular density graph and Low density graph.

www.manaraa.com

43

declaration of another three variables for counting the number of edges in each graph.

(Lines 10-12) declare three matrices with different names, the purpose of these metrics

is for representing graphs in the computer system, HeavyMatrix holds the heavy density

graphs, the RegularMatrix holds the regular density graphs and the LowMatrix holds the

low density graphs. The rest of this code (Lines 14-18) represents assigning the

adjacency matrixes to initial values.

After declaring and initializing the required variables, the next step is to fill up the

adjacency matrices with random values of zeros and ones depending on the density

type. This can be done by calling the method CreateGraph. See Figure 4.4 That shows

three calling statement , each one sends a three different parameters.

HeavyMatrix = CreateGraph(HeavyDensity , NumberOfNodes , HeavyMatrix); 1

RegularMatrix=CreateGraph(RegularDensity,NumberOfNodes,RegularMatrix); 2

LowMatrix = CreateGraph(LowDensity , NumberOfNodes , LowMatrix); 3

Figure 4.4 CreateGraph calling statements

The previous three statements call the same method but with different parameters, the

body of CreateGraph method is in the following diagram. See Figure 4.5.

public static int [][] CreateGraph (double Density , int NumberOfNodes , int 1

AdjMatrix [][]){ 2

for (int row = 0; row < NumberOfNodes; row++) { 3

for (int col = row+1 ; col< NumberOfNodes ; col++){ 4

if (row == col){ 5

AdjMatrix [row][col]= 0; 6

continue;} 7

double rand = Math.random(); 8

if (rand <= Density){ rand = 1 ;} 9

else{ rand = 0 ;} 10

if (AdjMatrix [row][col] == -1){ 11

www.manaraa.com

44

AdjMatrix [row][col]= (int) rand;} 12

} 13

} 14

return AdjMatrix ; 15

} 16

Figure 4.5 CreateGraph body

As previously said we don’t need to fill up all the cells in the graph, the only needed

cells that on the upper right part of the matrix. That’s why the second loop always

restarted from the value row+1 in line 4.

Lines 4-6 include if statement, the function of this if statement is to prevent occurrence

of loops in the graph, so that all of the cells in the matrix diagonal are assigned to zero.

Line 10 uses Math.random() method to generate random value in range of 0-.99, this

value is stored in variable rand, in the next line the variable rand is compared with the

parameter Density, if the rand value is less than or equal to the Density value then rand

will be assigned to zero, else rand will be assigned to one . Finally the value of rand will

be assigned to a cell in the adjacency matrix.

Returning to the main method, Figure 4.6 shows a part of code contains three calls for

the WriteInBenchMark method which is responsible for writing the contents of the

adjacency matrixes in form of bench marks. The body of this method is represented in

Figure 4.7.

WriteInBenchMark (NumberOfNodes,NumberOfEdges_H, 1

HeavyDensity, HeavyMatrix, "c:\\Heavy.txt"); 2

www.manaraa.com

45

WriteInBenchMark (NumberOfNodes,NumberOfEdges_R, 3

RegularDensity,RegularMatrix,"c:\\Regular.txt"); 4

WriteInBenchMark (NumberOfNodes,NumberOfEdges_L,LowDensity 5

LowMatrix,"c:\\Low.txt"); 6

Figure 4.6 WriteInBenchMark Method calls

public static void WriteInBenchMark (int NumberOfNodes, int throws 1

NumberOfEdges, double Density, int AdjMatrix [][], String BenchName) 2

IOException { 3

FileWriter File_Heavy = new FileWriter (BenchName); 4

BufferedWriter Out = new BufferedWriter(File_Heavy); 5

Out.write("This Benchmark is Created by Abdel Mutaleb Alzoubi"); 6

Out.newLine(); 7

Out.write("for the purpose of developing coloring graph algorithm"); 8

Out.newLine(); 9

Out.write("the number of nodes in this graph is: " + NumberOfNodes); 10

Out.newLine(); 11

Out.write("the number of edges in this graph is: " + (NumberOfEdges)); 12

Out.newLine(); 13

Out.write("nodes in this graph are connected to each other by " + Density + 14

"% of the total number of nodes"); 15

Out.newLine(); 16

Out.write("Stop"); 17

Out.newLine(); 18

Out.write("N "+ NumberOfNodes); 19

Out.newLine(); 20

Out.write("E "+ (NumberOfEdges)); 21

Out.newLine(); 22

Out.write("Start"); 23

Out.newLine(); 24

for (int i = 0 ; i < NumberOfNodes ; i ++){ 25

for (int j = i+1 ; j < NumberOfNodes ; j++){ 26

if (AdjMatrix [i][j]== 1){ 27

Out.write("e "+(i+1) + " " + (j+1)); 28

Out.newLine();} 29

} 30

} 31

Out.close(); 32

} 33

} 34

Figure 4.7 WriteInBenchMark body

www.manaraa.com

46

As a result of running the previous method three benchmarks will be created, each one

consists of a particular number of nodes and edges, these benchmarks can be stored on

the hard drive for any future need. See Figure 4.8 which shows a screen shot for a

benchmark.

Figure 4.8 Screenshot for a benchmark

4.2 NODE CALSS

Node.java is the main building unit of the program; it contains important attributes and

methods that will be referenced so many times in the program. Table 4.1 lists the

attributes and brief description for each of them.

Table 4.1 Node.java Attributes

Description Attribute Name

Stores the value of the node; it could be string, double, char,

or any other data type. This program deals with integers so the

Value of the node should be stored in integer data type.

Int Value

www.manaraa.com

47

This list stores the neighbors of a node; it stores the value of

each neighbor.

LinkedHashSet

Adjacents

Store the number of neighbors of a particular node. Int

NumberOfAdjacents

Point to the next Node in the backtracking method Node Next

Point to the previous Node in the backtracking method Node Previous

Colors are expressed as integers; the minimum color is the one

which has a minimum value. Value (-1) indicates that the node

is uncolored.

int Color

Stores the colors that are legal for a particular node. It stores

values in the range of 0 to ColorCount.

List PossibleColors

Stores the index of the last visited value of the PossibleColors

list. Used in the backtracking method

int ColorCount

Stores the Saturation Degree of a particular node. int Dsatur

Stores the neighbors of the node which are uncolored, it stores

the value of each neighbor.

LinkedHashSet

UnColoredAdjs

Methods in this class perform important operations; Table 4.2 lists methods name and a

brief description about the work of each one.

Table 4.2 Node.java Methods

Description Method Name

A constructor of the class node, it will assign the value of x

to the node's value, and it will assign a default values to

lists Adjacents and PossibleColors.

public Node (int x)

www.manaraa.com

48

Returns the next node to a particular node. Node next()

Adds the value of x to the Adjacents list which stores the

neighbors of the node.

AddConnection (int x)

Assigns the color x to the node. ColorNode(int x)

Returns the most appropriate color, by referring to the list

PossibleColors with index equal to the ColorCount. Or

returning -1 if all attempts have failed to color the node,

which means ColorCount is equal to PossibleColors.size()

int nextColor()

Checks whether a particular color is appropriate to be

assigned to a node or not.

boolean

isValidColor(Graph

graph, int color)

Computes the possible color for each node in the graph. computePossibleColors

(Graph graph, int k)

Computes the Saturation Degree for the node. ComputeDsatur(Graph

graph)

4.3 GRAPH CLASS

This is the main class in the program; it contains only two attributes, a constructor and

one method .See Table 4.3 and Table 4.4.

Table 4.3 Graph.java Attributes

Description Attribute Name

The adjacency matrix which represents the graph. int [][] AdjMatrix

The matrix which contains graph nodes. Node [] GraphNodes

www.manaraa.com

49

Table 4.4 Graph.java Methods

Description Method Name

The default constructor, it initializes the AdjMatrix and the

GraphNodes

public Graph()

The purpose of this method is to adjust the adjacency matrix

by inserting ones in the corresponding indices. Add the node

to the array GraphNodes[], and then calling the method

node.AddConnection();

AddEdge (int x, int

y)

4.3 FIXEDVALUES CLASS

FixedValues.java class contains the constants attributes; each attribute has only one

unchangeable value in all parts of the program. For example, the NumberOfNodes is

assigned to a specific value which represents the actual number of nodes, this value is

needed to be constant wherever it is used. See Table 4.5.

Table 4.5 FixedValues.java Attributes

Description Attribute Name

Represents the actual number of nodes in the

graph.

static int NumberOfNodes ;

Represents the physical location of the benchmark

on the hard drive.

static String FileLocation ;

Specifies the value -1 to distinguish the uncolored

nodes.

static int Uncolored;

www.manaraa.com

50

4.4 GRAPHREADER CLASS

The main function of this class is to read the benchmark which is stored in the hard

drive, and then convert it to an adjacency matrix representing the actual graph,

see Figure 4.9. Line 24 contains a call for the graph.AddEdge method, the purpose of

this method is to adjust the adjacency matrix by inserting ones in the corresponding

indices. Add the node to the array GraphNodes[], and then calling the method

node.AddConnection().

import java.util.*; 1

import java.io.*; 2

public class GraphReader { 3

public static Graph ReadGraph () throws FileNotFoundException, IOException 4

{ 5

BufferedReader R = new BufferedReader(new FileReader(new File 6

(FixedValues.FileLocation))); 7

String line = R.readLine(); 8

while(line.charAt(0) != 'N') {line = R.readLine();} 9

StringTokenizer token = new StringTokenizer(line, " "); 10

token.nextToken(); 11

FixedValues.NumberOfNodes=Integer.parseInt(token.nextToken().trim()); 12

line = R.readLine(); 13

line = R.readLine(); 14

line = R.readLine(); 15

Graph graph = new Graph(); 16

while(line != null) { 17

token = new StringTokenizer(line, " "); 18

token.nextToken(); 19

int x = Integer.parseInt(token.nextToken().trim()); 20

int y = Integer.parseInt(token.nextToken().trim()); 21

x--; 22

y--; 23

graph.AddEdge(x, y); 24

line = R.readLine(); 25

} 26

return graph; 27

www.manaraa.com

51

} 28

} 29

Figure 4.9 GraphReeader.java

4.5 LARGESTDGREE CLASS

This class represents the implementation of the largest degree algorithm, it starts by

reading the benchmark, then it finds the first clique using the exhaustive search method,

next it starts the coloring process using the largest degree algorithm, after that it checks

the probability of finding the first clique in the first subgraph using the same algorithm,

and finally it shows the results.

This class contains three main methods; ColorNode, ColorSubNOdes, and

CCI_Dev_Conv . It also makes use of another method from another class, the name of

this method is compare and it's written in the DegreeComparator class. This class is

originally implemented from the Comparator interface.

Starting our explanation with the compare method, the main function of this method is

to order the nodes of a collection basing on the degree of each node. This method will

be called implicitly when a new node enters to the collection, the new node will be put

in the right entry according to its degree. See Figure 4.10.

public static class DegreeComparator implements Comparator 1

{ 2

public int compare(Object o1, Object o2) 3

{ 4

Node v1 = (Node)o1; 5

Node v2 = (Node)o2; 6

if(v1.NumberOfAdjacents <= v2.NumberOfAdjacents) 7

{ 8

return 1; 9

www.manaraa.com

52

} 10

else if (v1.NumberOfAdjacents > v2.NumberOfAdjacents) 11

{ 12

return -1; 13

} 14

else return 0 ; 15

} 16

} 17

Figure 4.10 Compare method

The main function of the ColorNode method is to choose the minimum color for a

particular node. If the selected color exceeds the current maximum color then it will be

saved in a global variable as a new maximum color. See Figure 4.11.

public static void ColorNode (Node node , Graph graph , LinkedHashSet 1

ColorsOrder){ 2

for(int x = 0 ; ; x++) 3

{ 4

if(node.isValidColor(graph, x)) 5

{ 6

node.ColorNode(x); 7

ColorsOrder.add(node.Value); 8

if(x > MaxColor) 9

{ 10

MaxColor = x; 11

} 12

break; 13

} 14

} 15

} 16

Figure 4.11 ColorNode method

After coloring the node which has the maximum degree, the program must color the

adjacent nodes of this node. This is the main function of the ColorSubNOdes method. It

orders the adjacent nodes in decreasing order basing on the degree of each adjacent

using the compare method, and then it starts the coloring in the same previous manner.

www.manaraa.com

53

CCI_Dev_Conv is the last method in this class. This method is responsible for

calculating the Clique Conformance Index, Deviation Rate and Convergence rate. This

method has three parameters; array CliqueArr which contains clique elements ,

ColorsOrderArr which saves the order of coloring and CCIArr [] which will store the

CCI value for each node in the graph. See figure 4.12.

The if statement in Line 7 compares value of ColorOrderArr[j] with value of

Cliquearr[i] if they are identical and J is less than clique length then the deviation rate

and the distance for that node in index I will be assign to zero. Which means that if the

LDC or LDSC algorithms colors the clique nodes in order before color any node out of

the clique then the deviation rate and the distance for those nodes will be zeros.

Otherwise the above values will be calculated according to the previously explained

equations.

public static CCI [] CCI_Dev_Conv (CCI CCIArr [], int CliqueArr 1

, int ColorsOrderArr []) 2

int Nodes_Out_Of_Order = 0 ; 3

float Total_Deviation = 0 ; 4

 for (int i = 0 ; i <CliqueArr.length ; i++){ 5

 for (int j = 0 ; j < ColorsOrderArr.length ; j++){ 6

 if (ColorsOrderArr [j] == CliqueArr[i]){ 7

 if(j<CliqueArr.length){ 8

 if(CCIArr[i] != null){ 9

 CCIArr[i].value = CliqueArr[i]; 10

 CCIArr[i].distance = 0 ; 11

 CCIArr[i].deviation = 0;} break ;} 12

 Else{ 13

 if(CCIArr[i] != null){ 14

 CCIArr[i].value = CliqueArr[i]; 15

 CCIArr[i].distance = j-CliqueArr.length + 1 ; 16

 CCIArr[i].deviation = CCIArr[i].distance/(j + 1); 17

 Nodes_Out_Of_Order ++; 18

 Total_Deviation = Total_Deviation + CCIArr[i].deviation ; 19

www.manaraa.com

54

}}}}} 20

 double Deviation_Rate = Total_Deviation / Nodes_Out_Of_Order ; 21

 return CCIArr ;} 22

Figure 4.12 CCI_Dev_Conv Method

4.6 MODEFIEDLARGESTDEGREE CLASS

This class represents the new modified algorithm that resulted from this research; the

implementation of this algorithm is similar to the previous algorithm except some

differences. The main difference is in the compare method, nodes are ordered according

to their degrees but if two or more nodes have the same degree, then the program must

compare these nodes according to its saturation degree. See Figure 4.13.

public static class DegreeAndDsaturComparator implements Comparator{ 1

public int compare(Object o1, Object o2){ 2

Node v1 = (Node)o1; 3

Node v2 = (Node)o2; 4

if (v1.NumberOfAdjacents == v2.NumberOfAdjacents){ 5

if(v1.Dsatur <= v2.Dsatur){ return 1;} 6

else if (v1.Dsatur > v2.Dsatur){ return -1;} 7

else return 0 ; 8

} 9

else if(v1.NumberOfAdjacents < v2.NumberOfAdjacents){ 10

return 1;} 11

else if (v1.NumberOfAdjacents > v2.NumberOfAdjacents){ 12

return -1;} 13

else return 0; 14

} 15

} 16

Figure 4.13 Compare method

www.manaraa.com

55

Another important difference is the need for calculating the saturation degree for the

adjacent node of the colored node whenever a node is colored; this required a new

arrangement for the nodes in the main list whenever a node is colored.

www.manaraa.com

56

CHAPTER FIVE

COMPLEXITY AND PERFORMANCE ANALYSIS

This chapter presents analysis for the complexity of the largest degree algorithm (LDC)

and for the modified largest degree algorithm (LDSC), and it will also compare the

performance of both algorithms using several experiments. We will also generate results

for an exhaustive algorithm which detects the maximum clique in a randomly generated

graph.

www.manaraa.com

57

5.1 COMPLEXITY ANALYSIS

In the context of time complexity, LDC algorithm is considered faster than the LDSC

algorithm. LDC algorithm can be run in O(n2) in its worst case, while LDSC needs

O(n3) in the worst case.

5.1.1 COMPLEXITY OF THE LDC ALGORITHM

1. Assume the largest degree d = d1; and that node v1 has degree K1

1.1. The first step assigns the smallest color, say c1 to node v1. The total number of

steps required to color all the nodes in the neighbor list of v1 is

1+2+3+ … + d1 = (d1
2
+ d1)/2 = O(d1

2
)

1.2. Repeat the coloring procedure for the next node v2 with degree d2. The number

of steps required to color all the nodes adjacent to node v2 is

1+2+3+ … + d2 = (d22+ d2)/2 = O(d22)

2. In general, the number of steps required to color all the nodes in the neighbor list of

any node vi with degree di is

(di2+ di)/2 = O(di2)

3. Let the average degree of nodes be µ. Then the average number of steps required to

color the neighbors of node vi with degree ρ is O(µ 2)

www.manaraa.com

58

• Repeat the coloring procedure in steps 1 and 2 until all nodes are colored.

• Since each coloring step colors on the average ρ nodes, the coloring procedure

will be repeated on the average (n/ρ), where n is the number of nodes.

• The total number of coloring steps required to color all nodes, on the average is

 O((n/ µµµµ).(µµµµ 2) = O(n. µµµµ).

The complexity equation (above) can be expressed as

∑

=

n

i 1

µ
, where µµµµ= (

∑
=

n

i

id
1)/n.

5.1.2 COMPLEXITY OF LDSC ALGORITHM

The major difference between LDSC and LDC is that whenever a new node is colored

the algorithm will compute the saturation degree for all the neighbors of this node.

Practically this new change requires additional inner loop to recalculate the saturation

degree for every node. In term of time complexity the new change will require

additional (n) steps for each node. In other words, the time complexity for the new

algorithm is O (n3) in the worst case.

5.2 PERFORMANCE ANALYSIS

The algorithms presented in this thesis (LDC and LDSC) have been tested on a set of

benchmarks which are based on randomly generated graphs. Three categories of graphs

are used in the benchmarks: heavy, medium, and low density graphs. The benchmarks

include different graph sizes with the number of nodes ranging from 25 nodes (small

graphs) to 1000 nodes (large graph) as shown in Table 5.1, 5.2 and 5.3.

www.manaraa.com

59

Table 5.1 First Experiment

 LDC LDSC

Number

of

Nodes

Size

of the

clique

Density Number

of

Colors

Convergence

Rate ρ

Average

Deviation

CCI

=

ρ/∆

Number

of

Colors

Convergence

Rate ρ

Average

Deviation

CCI =

ρ/∆

25 4 L 5 1.00 0 ∞ 5 1.00 0 4

25 5 R 8 0.80 .61 1.29 7 .8 .64 1.24

25 9 H 11 0.89 0.307 9.00 11 1.00 0.00 9

50 4 L 8 .5 .57 .87 7 .5 .5 1

50 6 R 11 .83 .45 1.83 11 .83 .40 2.08

50 11 H 19 0.54 0.37 1.45 18 0.54 0.30 1.8

100 4 L 12 0.75 .6 1.24 11 0.75 .6 1.24

100 7 R 21 .42 .55 .77 20 .42 .51 .83

www.manaraa.com

60

100 14 H 30 .78 .57 1.37 28 .85 0.76 1.1

200 5 L 21 0.40 .6 .66 20 0.40 .6 .66

200 8 R 36 .5 .73 .68 34 .5 .7 .71

200 15 H 54 .6 .56 1.05 54 .66 .67 .98

500 5 L 40 .4 .63 .62 37 .4 .59 .67

500 9 R 73 .55 .83 .66 72 .55 .82 .67

500 19 H 124 .36 .64 .571 118 .36 .63 .579

1000 7 L 67 .14 .82 .17 64 0.14 .82 .17

1000 10 R 129 .3 .777 .385 126 .3 .774 .387

1000 22 H 220 .36 .62 .58 212 .36 .62 .58

Table 5.2 Second Experiment

 LDC LDSC

Number

of

Nodes

Size of

the

clique

Density Number

of

Colors

Convergence

Rate ρ

Average

Deviation

∆

CCI =

ρ/∆

Number

of

Colors

Convergence

Rate ρ

Average

Deviation

∆

CCI = ρ/∆

25.00 4.00 L 5.00 .75 33 2.24 5.00 1 0 4

25.00 5.00 R 7.00 .8 .16 4.79 7.00 1 0 5

25.00 10.00 H 11.00 .88 .1 .88 10.00 1 0 10

50.00 4.00 L 7.00 .75 .33 2.24 7.00 .75 .33 2.24

50.00 5.00 R 11.00 .6 .767 .781 10.00 .6 .749 .800

50.00 11.00 H 19.00 .63 .39 1.61 18.00 .72 .47 1.53

100.00 5.00 L 11.00 .8 .77 1.03 11.00 0.80 .78 1.02

100.00 7.00 R 22.00 .42 .58 .737 21.00 .42 .585 .732

www.manaraa.com

61

100.00 14.00 H 33.00 .714 .49 1.45 31.00 .714 .43 1.65

200.00 4.00 L 20.00 0.75 .777 .96 19.00 .75 .75 1

200.00 8.00 R 36.00 .75 .806 .93 35.00 .75 .77 .96

200.00 17.00 H 57.00 .64 .6 1.07 56.00 .64 .58 1.10

500.00 5.00 L 38.00 0.40 .82 .48 37.00 0.40 .82 .48

500.00 9.00 R 73.00 .55 .82 .67 70.00 .55 .81 .68

500.00 21.00 H 120.00 .47 .65 .72 117.00 .47 .64 .73

1000.00 5.00 L 65.00 0.40 .67 .58 65.00 0.40 .7 .48

1000.00 11.00 R 130.00 .36 .79 .45 126.00 .36 .80 .45

1000.00 20.00 H 216.00 .35 .70 .49 214.00 .4 .76 .52

www.manaraa.com

62

Table 5.3 Third Experiment

 LDC LDSC

Number

of Nodes

Size of

the

clique

Density Number

of

Colors

Convergence

Rate ρ

Average

Deviation

∆

CCI

= ρ/∆

Number of

Colors

Convergence

Rate ρ

Average

Deviation

∆

CCI =

ρ/∆

25.00 4.00 L 5.00 1.00 0.00 ∞ 5.00 1.00 0.00 4

25.00 5.00 R 6 1 0 ∞ 6.00 1.00 0.00 5

25.00 9.00 H 11 1 0 ∞ 11.00 1.00 0.00 9

50.00 4.00 L 7 1 0.00 ∞ 7 1 0.00 4

50.00 5.00 R 13 1 0.00 ∞ 13 1 0 5

50.00 13.00 H 20 0.84 .55 1.52 19 0.84 .46 1.8

100.00 4.00 L 13 0.50 .63 .78 11 0.50 .63 .78

100.00 7.00 R 21 0.62 .57 1.08 20 .62 .54 1.13

100.00 14.00 H 34 .64 .47 1.35 33 .71 .51 1.37

200.00 5.00 L 20 .6 .81 .73 18 .6 .79 .75

200.00 8.00 R 36 .57 .77 .73 34 .57 .73 .78

200.00 17.00 H 57 .64 .60 1.07 56 .64 .58 1.1

500.00 5.00 L 38 .40 .82 .48 37 .4 .82 .48

500.00 9.00 R 74 .22 .75 .29 70 .22 .74 .29

500.00 20.00 H 126 .35 .68 .511 120 .30 .63 .47

1000.00 5.00 L 65 .40 .67 .58 65 .40 .70 .56

1000.00 11.00 R 128 .18 .6 .29 126 .18 .60 .29

1000.00 20.00 H 219 .43 .7 .61 215 .43 .7 .61

www.manaraa.com

63

Each experiment contains several runs for graphs with different densities and sizes. For

example, the first three rows correspond to graphs with 25 nodes and low density (L),

regular density (R) and high density (H). Low density graphs correspond to graphs

where the probability of two nodes being connected is 0.25. The probabilities for

regular and high density graphs are 0.5 and 0.75 respectively.

Each row of the Table shows the following parameters:

1. The number of nodes: This is given as an input to the program.

2. Size of the largest clique: Generated by the program.

3. Density: (L, R, H): given as input to the program in the form of a probability.

4. Number of colors: The number of colors used to color the graph; generated by

the program.

5. Convergence rate (ρ): Computed by the program = M/N; where M is the number

of nodes colored while in the clique; and N is the size of the clique.

6. Average deviation (∆): Computed by the program; ∆ = Ni
N

i
/

1∑ =
δ , where δ is

the deviation of each node, measured as δ= [R(γi)-N]/ R(γi), where N is the size

of the clique and R(γi) is the order of coloring node R(γi).

7. Clique conformance index CCI = ρ/∆; generated by the program.

These parameters are shown for the LDC and LDSC algorithms.

Table 5.4 shows the results averaged for all three experiments. The results converge for

all three experiments. Since the graphs are generated randomly, we decided to take the

average results for several runs. We ran several experiments and the results remain very

close for all runs.

www.manaraa.com

64

Table 5.4: Average results for three experiments

Low Density Largest Degree New Largest Degree

Number
of Nodes

Size of
the

clique

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

25 4
5 0.92 0.11 3.41 5.00 1.00 0.00 4.00

50 4
7 0.75 0.30 2.37 7.00 0.75 0.28 2.41

100 4
12 0.68 0.67 1.02 11.00 0.68 0.67 1.01

200 5
20 0.58 0.73 0.78 19.00 0.58 0.71 0.80

500 5
39 0.59 0.76 0.53 37.00 0.40 0.74 0.54

1000 6
66 0.31 0.72 0.44 64.67 0.31 0.74 0.40

Regular Density Largest Degree New Largest Degree

Number
of Nodes

Size of
the

clique

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

25 5 7.00 0.87 0.26 3.69 4.79 0.93 0.21 3.75

50 5 11.67 0.81 0.41 2.54 9.70 0.81 0.38 2.63

100 7 21.33 0.49 0.57 0.86 15.10 0.49 0.55 0.90

200 8 36.00 0.61 0.77 0.78 34.33 0.61 0.73 0.82

500 9 73.33 0.44 0.80 0.51 39.42 0.44 0.79 0.55

1000 11 129.00 0.28 0.72 0.38 126.00 0.28 0.72 0.41

High Density LDC LDSC

Number
of Nodes

Size of
the

clique

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

Coloring Convergence
Rate ρ

Average
Deviation ∆

CCI
= ρ/∆

25 9 11 0.92 0.14 6.29 11 1.00 0.00 9.33

50 12 19 0.67 0.44 1.53 18 0.70 0.41 1.7

100 14 32 0.71 0.51 1.39 31 0.76 0.57 1.33

200 16 56 0.70 0.59 1.06 55 0.65 0.61 1.06

500 20 123 0.39 0.66 0.72 118 0.38 0.61 0.59

1000 21 218 0.38 0.67 0.56 214 0.40 0.69 0.57

Figures 5.1, 5.2 and 5.3 show the coloring provided by LDC and LDSC algorithms for

low, regular and high density graphs. LDSC produces slightly lower number of colors

than LDC.

www.manaraa.com

65

www.manaraa.com

66

Figures 5.4, 5.5 and 5.6 show the clique conformance index for both LDC and LDSC

algorithms. Both algorithms observe similar behavior. For lower number of nodes, both

algorithms conform more closely to the maximum clique in the graphs. The larger the

graph, the more the algorithms deviate from the maximum clique.

www.manaraa.com

67

www.manaraa.com

68

Figure 5.7 shows the performance of both algorithms for large number of nodes, high

density graphs. The density of the graph does not have a significant impact on the

performance of the algorithms.

Figure 5.7: 1000 Nodes light, regular, and heavy density graphs

0

50

100

150

200

250

Light Regular Heavy

#
 C

o
lo

rs

LDC # Colors

LDSC # Colors

www.manaraa.com

69

We finally compare the coloring algorithms (LDC and LDSC) with backtracking

exhaustive search coloring algorithm.

Table 5.5 shows the results for small size graphs (number of nodes less than 50). We

could not run the backtracking algorithm for larger graphs, because the execution time

is prohibitive. For 40 nodes, the program ran for more than 3 hours and the time

increase is exponential with the increase of the number of nodes. For the small size

graphs we ran, the performance of the LDC and LDSC in terms of the number of colors

is comparable. This indicates that the conformance to the maximum clique leads to

lower number of used colors.

Table 5.5: Comparing LDC and LDSC with Backtracking Algorithm

 LDC LDSC Back Tracking (Optimal)

Number

of Nodes

Densit

y

Number of

Colors

Time in

Seconds

Number of

Colors

Time in

Seconds

Number of

Colors

Time

Number of

Steps

15 L 4 Less than 1 4 Less than 1 4 2 Seconds 1238

16 L 4 Less than 1 4 Less than 1 4 4 Seconds 8874

17 L 3 Less than 1 3 Less than 1 3 26 Seconds 47947

18 L 3 Less than 1 3 Less than 1 3 1.14 minutes 150704

19 L 4 Less than 1 4 Less than 1 4 11.38 minutes 1,182,112

20 L 4 Less than 1 4 Less than 1 4 40 minutes 5931701

25 L 4 Less than 1 4 Less than 1 4 1 Hour 9,076,729

30 L 4 Less than 1 4 Less than 1 4 1.3 Hour 12,452,861

40 L 5 Less than 1 5 Less than 1 5 3 Hours 29,712,003

 Figures 5.1 – 5.6 show that both LDC and LDSC conform closely to the maximum

clique for small graphs. For 50 node graphs, the CCI performance index is 3, 4, and 6

for low, regular and heavy density graphs respectively. Hence, the algorithms managed

to color the graphs with the same number of colors as the backtracking exhaustive

algorithm. Albeit, the time used to produce the colors is significantly lower than the

www.manaraa.com

70

time required by the backtracking algorithm, as shown in Figure 5.8. The time for LDC

and LDSC is not shown since it took few seconds for the algorithms to finish coloring

the graph.

Figure 5.8: Coloring Time for Backtracking

Algorithm

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

15202530354045

Number of Nodes

N
u

m
b

e
r

o
f

S
te

p
s(

T
im

e
)

www.manaraa.com

71

CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

In this chapter, we present and discuss the conclusions of our work, and ideas for future

work.

6.1 SUMMERY

First of all the researcher has introduced a brief review for some important concepts

related to the subject of the thesis such as, graphs, graph coloring, clique, P, NP, and

NP-Complete Problems. After that he has clarified the problems that have been

addressed by the thesis in chapter 1. In chapter 2 the researcher has presented a brief

description of what have been done by other scientists in this area of research. We have

introduced some methods addressing the graph coloring problem such that the

backtracking method, the local search method and the greedy method. In chapter 3 he

has explained the modified coloring algorithm. At the beginning of the chapter he

clarified the term "Degree Saturation", and then he explained the modified coloring

algorithm. After that he explained the clique detection process using the modified

coloring algorithm. The implementation of this algorithm is illustrated in chapter 4, in

this chapter the researcher discussed the random generation of the graphs, together with

their possible properties, types, and the data structure used in the generation, he also

went through the main java classes used in our implementation. The complexity

analysis, the performance analysis and the experiments results, are discussed in chapter

5.

www.manaraa.com

72

6.2 CONCLUSIONS

The graph coloring problem and the maximum clique problem are essential problems in

graph theory, and they arise in many real life applications. These two problems have

received a lot of attention by the scientists, not only for their importance in the real life

applications, but also for their theoretical sides.

Unfortunately solving these problems is very complex, and the proposed algorithms for

this purpose are able to solve only the small graphs with up to 80 nodes, on the other

hand and in order to module the real life application we need to graphs of hundreds or

thousands of nodes.

This thesis presents a new algorithm for solving these hard problems. The new

algorithm runs in a considerable time and it shows a competitive results for both of

special purpose graphs as well as the general random graphs. It also introduces a new

measure for the deviation of the algorithms from maximum clique based coloring. We

summarize the main achievement and contributions of this thesis by the following:

1. A modified algorithm (LDSC) of the maximum degree algorithm (LDC) is

introduced, where the LDSC used the idea of saturation degree to better

determine the next node to be colored when two or more nodes have the same

degree. It also offers a detection of the maximum clique in the underlying

graphs.

2. New performance measure is given, and used to measure the performance of

both LDC and LDSC. This measure use the ideas of convergence rate

ρ, deviation rate δ, average deviation ∆, and the clique conformance index

(CCI).

www.manaraa.com

73

3. A performance checking mechanism is introduced and used in our experimental

work.

6.3 FUTURE WORK

We would like to suggest some interesting issues and ideas that could not be satisfied

because of time limitation and they will help as improvement of this work.

• Work on new algorithms to produce better CCI.

• Study other algorithms to measure and compare the CCI.

www.manaraa.com

74

REFERENCES

1. Akkoyunlu, E. V.-6. (1973). The enumeration of maximal cliques of large

graphs. SIAM J. Compute , 1-6.

2. Allen, M., Kumaran, G., & Liu, T. (2002). A combined algorithm for graph-

coloring in register allocation. Proceedings of the Computational Symposium

on Graph Coloring and its Generalizations, (pp. 100–111).

3. Appel, K., & Haken, W. (1977). Every planar map is four colorable. Part I.

Discharging, Illinois J. Math. 21 , (pp. 429-490).

4. Appel, K., & Haken, W. (1977). Every planar map is four colorable. Part II.

Reducibility, Illinois J. Math. 21. , (pp.491--567).

5. Babel, L., & Tinhofer, G. (1990). A branch and bound algorithm for the

maximal clique problem. ZOR-Methods and models of operation research ,

207-217.

6. Balas, E., & Yu, C. S. (1986). Finding a maximum clique in an arbitrary graph.

SIAM J. Comput , Vol 14: 1054-1068.

7. Balasundaram, B. e. (2009). Clique Relaxations in Social Network Analysis:

TheMaximum k-plex Problem.

8. Bednarek, A., & Taulbee, O. (1966). On maximal chains Roum. Math. Pres et

Appl , Vol 11: 23-25.

9. Biggs, N. L., Lloyd, E. K., & Wilson, R. J. (1986). Graph Theory. Oxford.

10. Bonner, R. (1964). On some clustering technique. IBM J. Res. Develop , Vol. 8:

22-32.

11. Brelaz, D. (1979). New methods to color the vertices of a graph. ACM .

www.manaraa.com

75

12. Bron, K., & Kerbosh, J. (1973). Finding all cliques of an undirected graph.

Commun. ACM , Vol. 16: 575-577.

13. Caramia, M., & Dell’Olmo, P. (2001). Iterative Coloring Extension of a

Maximum Clique. Naval Research Logistics (NRL) .

14. Coleman, T. e. (1983). Estimation of sparse jacobian matrices and graph

coloring problems, . SIAM Journal on Numerical Analysis .

15. De Werra, D. (n.d.). An introduction to timetabling . European Journal of

Operational Research , 151–162.

16. Desle, J. F., & Hakimi, S. L. (1970). On maximum internally stable set of a

graph. fourth annual Princeton conference on information science and systems,

(pp. Vol. 4: 459-462).

17. Doriean, P. (1969). A note on the detection of cliques in valued graphs.

Sociometry , Vol 32: 237-244.

18. Downey, R. G., & Fellows, M. R. (1995). Fixed-parameter tractability and

completeness,. Theoretical Computer Science , 141 (1–2).

19. Gamst, A. (1986). Some lower bounds for a class of frequency assignment

problems. ,. IEEE Transactions of Vehicular Technology , 8–14.

20. Gebremedhin, A. (1999). Parallel Graph Coloring. UNIVERSITY M Thesis

University of Bergen Norway Spring.

21. Harary, F., & Ross, I. C. (1957). A procedure for clique detection using the

group matrix. Vol. 20: 205-215.

22. Jensen, T. R., & Toft, B. (1994). Graph Coloring Problems. USA: John Wiley

& Sons.

www.manaraa.com

76

23. Johnson, Aragon, McGeoch, & Schevon. (1991). Optimization by Simulated

Annealing: An Experimenta Evaluationl; Part {II}, Graph Coloring and

Number Partitioning''. Operations Research , vol. 39, 378-406.

24. Johnson, D. S., Mehrotra, A., & Trick, M. (Ithaca, New York, USA).

Proceedings of the Computational Symposium on Graph Coloring and its

Generalizations. 2002.

25. Kempe, B. A. (1879). On the geographical problem of the four colors. Amer. J.

Math., 2 , 193-200.

26. Kopf, R., & Ruhe, G. (1987). A computational study of the weighted

independent set problem for general graphs. Vol. 12:167-180.

27. Loukakis, E., & Tsouros, C. (1981). A depth first search algorithm to generate

the family of maximal independent sets of graph lexicographically. Vol.

27:249-266.

28. Luce, R., & Perry, D. (1949). A method of matrix analysis of group structure.

14(2): 95-116.

29. Maghout, K. (1959). Sur la determination des nombers de stabilite et du nombre

chromatique d'un graph,. Vol. 248: 2522-2523.

30. Magnus, M. H. (1991). Frugal methods for the independent set and graph

coloring problems. PhD thesis, The State University of New Jersey, New

Brunswick, New Jersey.

31. Malkawi, M. e. (Mar 23-26, 2009). A graph-Coloring –Based Navigational

Algorithm for Personnel Safety in Nuclear Applications. Proceeding of the 6th

International Symposium on Mechatronics and its Applications (ISMA09), .

Sharjah, UAE,.

www.manaraa.com

77

32. Malkawi, M. e. (1990). Analysis of a Graph Coloring Based Distributed Load

Balancing Algorithm. Journal of Parallel & Distributed Systems , vol. 10.

33. Malkawi, M. e. (1992). Distributed Algorithms for Edge Coloring of Graphs.

Conference on Parallel and Distributed Computing Systems.

34. Malkawi, M. e. (1987). Distributed Algorithms for Load Balancing in Very

Large Homogeneous Systems. Fall Joint Computer Conference.

35. Malkawi, M. e. (1990). Graph Coloring Based Distributed Load Balancing

Algorithm and Its Performance Evaluation. 4th Annual Symposium on Parallel

Processing .

36. Malkawi, M. e. (1989). System Theory Modeling and Performance Analysis of a

Distributed Load Balancing Algorithm. 32nd Midwest Symp. on Circuits and

Systems .

37. Malkawi, M., & Haj Hasan, M. (2010). Coloring of Triangle Free Girth Graphs

with Minimal k-Colors. International Journal on Computers and Network

Security, , Vol. 2, No. 5.

38. Malkawi, M., Hajhasan, M., & Hajhasan, O. (2008). New exam scheduling

algorithm using graph coloring. International Arab Journal for IT , (IAJIT).

39. Marcus, P. M. (1964). Derivation of maximal compatibles using Boolean

algebra . IBM J. Res. Develop , ., Vol. 8: 537-538.

40. Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992.). A heuristic

repair method for constraint satisfaction and scheduling problems. Artificial

Intelligence , 161–205.

41. Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing

conflicts: A heuristic repair method for constraint satisfaction and scheduling

problems. Artificial Intelligence , 58(1–3):161–205, .

www.manaraa.com

78

42. Paull, M. C., & Unger, S. H. (1959). Minimizing the number of states in

incompletely specified sequential switching function . Vol. EC-8: 356-367.

43. Robson, J. M. (1989). Algorithm for maximum independent set . J.Algorithms ,

Vol. 7: 425-440.

44. Robson, J. M. (2001). Finding a maximum independent set in time O (2n/4).

45. Tarjan, R. E. (1972). Finding the maximum clique. Technical Report , 72-123.

46. Tomita, A., Tanaka, A., & Takahashi, H. (1988). The worst-case time

complexity for finding all the cliques. UEC-TR-C5.

